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Proteins can be very tolerant to amino acid substitution, even within
their core. Understanding the factors responsible for this behavior is
of critical importance for protein engineering and design. Mutations
in proteins have been quantified in terms of the changes in stability
they induce. For example, guest residues in specific secondary struc-
tures have been used as probes of conformational preferences of
amino acids, yielding propensity scales. Predicting these amino acid
propensities would be a good test of any new potential energy
functions used to mimic protein stability. We have recently developed
a protein design procedure that optimizes whole sequences for a
given target conformation based on the knowledge of the template
backbone and on a semiempirical potential energy function. This
energy function is purely physical, including steric interactions based
on a Lennard-Jones potential, electrostatics based on a Coulomb
potential, and hydrophobicity in the form of an environment free
energy based on accessible surface area and interatomic contact
areas. Sequences designed by this procedure for 10 different proteins
were analyzed to extract conformational preferences for amino acids.
The resulting structure-based propensity scales show significant
agreements with experimental propensity scale values, both for
a-helices and b-sheets. These results indicate that amino acid confor-
mational preferences are a natural consequence of the potential
energy we use. This confirms the accuracy of our potential and
indicates that such preferences should not be added as a design
criterion.

Predicting protein structure requires an understanding of how
tertiary structure depends on the primary amino acid sequence.

An intuitive approach to that problem is to explore the wealth of
information in experimental structures solved at atomic resolution
and stored in protein databanks such as the PDB (1). It is observed
that the three-dimensional structure of a protein is hierarchical,
with a local organization of the amino acids into secondary struc-
ture elements (a-helices and b-sheets), which are themselves or-
ganized in space to form the tertiary structure. The same hierarchy
is used in most ab initio protein structure prediction protocols.
Secondary structures are predicted first, usually based on statistical
analysis of known protein structures and multiple sequence align-
ments. Then various close-packing arrangements of these helices
and strands are tested, either systematically or by deterministic
optimization tools [for a recent review, see Koehl and Levitt (2)].
It is therefore important to understand the physical basis for the
correlation between sequence and the presence of an a-helix or a
b-sheet in the structure. In this paper, we derive structure-based
secondary-structure propensity scales for amino acids, using a
physical all-atom potential energy function.

Statistical surveys of proteins of known structures (3–7) revealed
that amino acids have clear conformational preferences for one
type of secondary structure. The whole field of secondary structure
prediction is concerned with analyzing how these preferences
determine whether a sequence segment is an a-helix, a b-sheet, or
neither. This has led to the development of different methods,
based either directly on these statistical data (3, 4, 8, 9), on
physicochemical properties of amino acids (10, 11), on multilayered
neural networks (12–15), or on evolutionary information (16)
andyor on multiple sequence alignments (17–19). Prediction meth-
ods reach 68% accuracy when derived from a single sequence (20)

and 75% when derived from multiple sequences (21, 22). Although
these figures have increased steadily over the years, the present
methods are not expected to reach average prediction accuracy
better than 85% (23). While there is hope that a completely new
method will emerge to break this barrier, it is clear that much still
needs to be learned about the forces stabilizing secondary struc-
tures.

Experimental studies of b-sheet propensities have focused on
proteins [mainly the B1 domain of protein G (24–26)]. The various
propensity scales derived from these experiments do not correlate
well with each other (27). Plausible reasons for these differences
include position and stability effects. In contrast, studies on a-helix
propensities are based on short peptides and complete proteins as
host molecules [for review, see Pace and Scholtz (28)]. The various
scales that have been derived from these data correlate well with
each other as well as with statistical scales derived from known
protein structures. An attempt to rationalize these scales for a-helix
propensities based on thermodynamics was developed by Luque
and coworkers (29). In brief, they propose a structural parameter-
ization of folding energetics in which the free energy of folding is
expressed as a linear combination of the changes in solvent-
accessible surface areas of all atoms of the molecule, following an
idea originally proposed by Eisenberg and McLachlan (30). This
structure-based thermodynamic analysis was performed to study
the effects of a single mutation in a helix of T4 lysozyme, barnase,
a synthetic leucine zipper, and a synthetic peptide, for all of which
experimental data were available. The corresponding data provide
a structure-based helix propensity scale, which was found to cor-
relate well with experimental scales. In all four cases, included in
their study, the mutated amino acids are at solvent-exposed loca-
tions; this minimizes the effects of the mutations on internal
interactions in the native state and maximizes the effects of changes
in solvent accessibility from which the free energies are derived. As
such, it cannot be directly applied to study buried residues. Fur-
thermore, because the amino acids most commonly found in
b-sheets are hydrophobic, another approach is needed for studying
b-sheet conformations.

Although it is clear that the local amino acid sequence
determines the secondary structure of a protein, general at-
tempts to predict amino acid preferences from their chemical
structure have had limited success. Direct calculations of the
effect of sequence on a-helix and b-sheet stability is difficult
because of the intrinsic problem of estimating the thermody-
namic stability of any structure. In this paper, we derive sec-
ondary structure preferences by changing the sequence rather
than the protein conformation. Our method is derived from the
sequence design strategy we have developed recently (69), in
which the complete sequence of a protein is optimized based on
its target backbone, and a specified amino acid composition. The

This paper was submitted directly (Track II) to the PNAS office.

*To whom reprint requests should be addressed at: Department of Structural Biology,
Fairchild Building, D109, Stanford University, Stanford, CA 94305. E-mail:
koehl@hyper.stanford.edu.

The publication costs of this article were defrayed in part by page charge payment. This
article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C.
§1734 solely to indicate this fact.

12524–12529 u PNAS u October 26, 1999 u vol. 96 u no. 22



design is based on a Monte Carlo minimization of the free energy
of the model protein built from the sequence and the target
conformation. The free energy is computed as the sum of van der
Waals interactions, electrostatics, and a free energy of environ-
ment. A statistical survey of 100 designed sequences for a set of
10 proteins is used to compute the frequency of occurrence of
each amino acid in an a-helix or a b-sheet, and the results are
compared with existing scales. We show that protein topology
and a simple physicochemical potential are enough to explain
amino acid conformational preferences.

Methods
Protein Sequence Design. A complete description of the protein
design procedure has been given elsewhere (69). In brief, the
program starts from the backbone, B, of a template protein
structure. A random sequence, S0, is generated, based on a given
amino acid composition (usually, the native composition for the
chosen backbone). An all-atom model of the chimeric protein
obtained by threading this sequence on the backbone B is built by
using a self-consistent mean field method to position side-chains.
The self-consistent mean field method is fast and was shown to
generate low energy models as accurate as other side-chain mod-
eling methods (31). The energy, E0, of this model is then computed
by using our physical potential energy function. Next, a new
sequence, S1, is generated by choosing two positions in S0 at random
and exchanging the corresponding amino acid types. The energy,
E1, of the new model derived from sequence S1 is calculated, and
the change is accepted or rejected, using the classical Metropolis
scheme (32): The move is accepted if a random number drawn from
a uniform distribution between 0 and 1 is lower than exp [(E0 2
E1)ykT]. This optimization scheme converges to a stable sequence
for the target fold. Specificity for the template fold is enforced by
keeping the amino acid composition constant, in accordance with
the random energy model (33, 34).

Free Energy Evaluation. The stability of a sequence S is measured by
the difference DG(S) in free energy between its native state, N, and
an unfolded state, U:

DGU3N~S! 5 GN~S! 2 GU~S! [1]

The total free energy, G, can be partitioned into three terms:

G~S! 5 Gbon~S! 1 Gnb~S! 1 Genv~S!, [2]

where Gbon(S) and Gnb(S) are the covalently bonded and non-
bonded interactions, respectively, and GEnv(S) is the free energy of
environment of the sequence S in the template.

The bonded interactions are local interactions and, to the first
approximation, only depend on the amino acid composition of the
sequence of the protein of interest. With fixed amino acid compo-
sition, the contribution of bonded interactions to DG is neglected.

The nonbonded interactions are described by the sum of a
Lennard-Jones potential and a Coulomb potential for van der
Waals and electrostatics interactions, respectively. For any confor-
mation C,

Gnb~S,C! 5 EvdW~S,C! 1 EElec~S,C!. [3]

The Lennard-Jones potential of a protein with sequence S and
conformation C is given by

EvdW~S,C! 5 O
i
O
j,i

«ijFS rij
o

rij.
D 12

2 2S rij
o

rij
D 6G , [4]

where the summation extends over all pairs of atom (i, j), rij is the
interatomic distance between i and j, and «ij and rij

o are constants that
depend on the chemical nature of atoms i and j.

The electrostatics potential energy is given by

EElec~S,C! 5 O
i
O
j,i

qiqj

Dirij
, [5]

where qi and qj are the partial charges of i and j, respectively. The
solvent plays a significant role in determining the electrostatic
energy of a protein, most notably through screening of the elec-
trostatic interactions. As a first approximation, this screening is
included in the calculation by damping EElec with a distance
dependent dielectric constant:

Dr 5 4rij . [6]

To account for hydrophobic interactions within a protein, as well as
contacts with the solvent, Koehl and Delarue (35) introduced a free
energy of environment, GEnv, which takes in account the full
environment of each atom of the protein (solvent and other protein
atoms):

GEnv 5 O
i

@Ai~ASAi 1 PCAi! 1 BiNPCAi#, [7]

where the summation extends over all atoms i of the protein. ASAi
is the accessible surface area of i, and PCAi and NPCAi are the
surface areas of i occluded by polar and nonpolar atoms, respec-
tively (also known as the polar and nonpolar contact areas of i). The
solvent accessible area, ASAi, measures the contact with solvent,
which is considered as part of polar contact area because water is
intrinsically polar. Ai and Bi are surface tension factors for polar and
nonpolar interactions. Let us define TASAi, the total accessible
surface area of atom i in the presence of local interactions only, as

TASAi 5 ASAi 1 PCAi 1 NPCAi. [8]

The free energies of a sequence, S, in the native structure, N, and
in the denatured state, U, respectively, are therefore given by

GN
solv~S! 5 O

i
~Bi 2 Ai!NPCAi 1 O

i
Ai TASAi [9]

and

GU
solv~S! 5 O

i
Ai TASAi . [10]

The coefficients Ai and Bi are derived from experimental values
of transfers of amino acid analogs from n-octanol to water (36).

Checking the Specificity of the Designed Sequences. Specificity should
be a major concern of computational approaches to protein design.
Simply modifying a sequence such as to optimize its stability when
threaded on the template backbone may not result in a successful
design unless this sequence remains incompatible with competing
folds. Specificity is implicitly taken into account in our approach by
maintaining the amino acid composition constant. A designed
sequence can be tested for specificity by threading it on a large
collection of folds: The design is considered successful if threading
detects the template fold as the most probable fold for the sequence.
To test our sequences, we have used THREADER, the fold recogni-
tion program developed by David Jones (37). Results from
THREADER are given as a Z-score, Z(S, C), which defines how well
a given fold, C, recognizes a sequence, S, compared with all other
folds. Here we define the relative Z-score of sequence S as the ratio
of the Z-score of S for the native conformation, C, to the Z-score
of the native sequence, N, for the same native conformation, C.

Computing Amino Acid Conformational Preferences. The conforma-
tional preference CP(j,k) of an amino acid of type j for a secondary
structure k is defined as the ratio of the probability, Pj,k, of finding
the j residue in secondary structure k to the probability, Pj, of
finding the j amino acid anywhere in the protein sequence (4):

Koehl and Levitt PNAS u October 26, 1999 u vol. 96 u no. 22 u 12525

BI
O

PH
YS

IC
S



CP~j,k! 5
Pj,k

Pj
, [11]

in which

Pj,k 5
nj,k

O
j51

20

nj,k

, [12]

where nj,k is the number of residues of type j in secondary structure
k, and

Pj 5
nj

N
, [13]

where nj is the number of residue of type j in all of the sequences,
and N is the total number of residues.

It is worth mentioning that CP(j,k) is not a probability; it
measures the bias of finding the amino acid type j in state k,
compared with the average occurrence of any type of amino acid in
state k. As such, CP(j,k) will take values .1 for residues that favor
conformation k, and ,1 otherwise.

Most of the experimental propensity scales are based on free
energy differences. We will therefore report preferences as an
energy-like term, using

E~j,k! 5 2log@CP~j,k!#. [14]

Identification of Secondary Structure Elements. The positions of the
secondary structure elements of each protein considered here were
assigned by running STRIDE (38) on each corresponding PDB file.
Only helices and b-sheets were considered. Because it is often
difficult to identify the beginning and ending residues of a second-
ary structure segment, we did not consider as part of the secondary
structure the first and last residues identified by STRIDE.

Test Cases. A set of 10 different proteins was considered: the C
terminal fragment of the L7yL12 ribosomal protein [PDB code
1CTF (39)]; the chymotrypsin inhibitor 2 from barley seed [PDB
code 2CI2-I (40)]; the SH3 domain of the human phosphoric diester
hydrolase [PDB code 2HSP (41)]; the bovine calbindin D9k [PDB
code 4ICB (42)]; the DNA binding protein of the bacteriophage l
[PDB code 1LMB-3 (43)]; sperm whale myoglobin [PDB code
5MBN(44)]; green alga plastocyanin [PDB code 7PCY (45)]; the
bovine pancreatic trypsin inhibitor [PDB code 5PTI (46)]; the B1
domain of protein G [PDB code 1PGB (47)]; and chicken triose
phosphate isomerase [PDB code 1TIM-A (48)]. Table 1 summa-
rizes the secondary structure contents of these proteins.

Results
Conformational Preferences of Amino Acids. Ten sequences were
designed for each of the 10 proteins in our data set (Table 1),
yielding a total of 100 model proteins (we exclude the native protein
with its native sequence in each case). Determination of confor-
mational preferences of each amino acid type was performed
according to the procedure of Chou and Fassman (4), as described
in Methods. This analysis was applied to 600 nonhomologous native
protein sequences, yielding an updated set of statistical conforma-
tional preferences: RevoC&F. A direct comparison between these
updated Chou and Fasman propensities and those extracted from
our designed sequences is illustrated in Fig. 1 for a-helix and
b-sheet. Correlations with other propensity scales are given in
Tables 2 and 3, respectively.

a-Helix propensity. Because its existence was suggested by Pauling
(49), the a-helix has been the center of most studies on protein
structure and protein folding. The a-helix can be studied both as a
secondary structure element of a large protein or as an isolated
structural entity (50). Peptides are well suited to the experimental
studies of helix propensity that measure how a given residue type
affects helix stability. Such studies have not been limited to peptides.
Experimental helix propensity scales have been based on data
obtained from peptides, coiled-coils of a-helices, and intact pro-
teins. Compilation of these results also has led to a peptide-specific
scale [AGADIR (51)], as well as to a global scale including all data
(28). Both agree well with each other and are in reasonable
agreement with a structure-based propensity scale developed by
Luque et al. (29) and with propensity scales derived from statistical
analysis of known protein structures. We have chosen to compare
our own scale with the two compiled scales of Serrano and Munoz

Fig. 1. Comparison of the amino acid secondary structure propensity scales of
Chou and Fasman (4) (revised in this work) with those derived from computer
designed sequences. (A) a-helix. (B) b-sheet. The position of secondary structures
was computed by using STRIDE (38), and only a-helices and b-strands are consid-
ered.

Table 1. Secondary structure composition of the 10 proteins
included in our database

PDB ID
code Size

a-helix,
%

b-sheet,
%

Secondary
structure, %

1PGB 56 27 43 70
5PTI 58 14 24 38
2CI2 65 17 29 46
1CTF 68 53 26 79
2HSP 71 0 28 28
4ICB 76 58 0 58
1LMB 92 63 0 63
7PCY 98 4 48 52
5MBN 153 74 0 74
1TIM 247 46 17 63
Total 1,154 36 18 54
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(51) and Pace and Scholtz (28), as well as with the structure-based
scale of Luque et al. (29) and the statistical scale derived from
known proteins [revised Chou and Fasman scale (4); see above].
The results are given in Table 2.

The agreements between our scale and the experimental scales
for a-helix propensity are good for 19 amino acids (excluding
proline for lack of data in the other scales) with correlation
coefficients between 0.70 and 0.83. It is worth noticing the very good
correlation (0.79) between our scale and the revised Chou and
Fasman scale (4) (see Fig. 1A). In energy terms, the difference
observed between the best and worst helix formers in our scale is

1.6 RT, which is close to the 1 kcalymol difference observed for all
experimental scales. Our scale indicates that Ala stabilizes helices
but that other residues are better helix formers (including L, E, R,
and I). This differs from most other scales in which Ala has the
greatest helix propensity. Myers et al. (52, 53) also observed that Ala
is not the best helix former in their scale derived from experiments
on a full protein.

The amino acid composition of the protein is held fixed during
our design procedure. To assess the extent to which this affects our
helix propensity scale, we repeated the procedure described above,
using an equal number of random sequences of native amino acid

Table 2. Comparison of a-helix propensity scales

Amino
acid N Design RAN Pace Agadir RevoC&F Luque

G 84 1.24 0.02 1.00 1.10 1.03 0.79
A 344 20.04 20.05 0.00 0.00 0.00 0.00
V 257 20.06 0.09 0.61 0.46 0.58 0.36
I 224 20.26 0.04 0.41 0.35 0.45 0.48
L 381 20.38 20.21 0.21 0.19 0.12 0.15
F 127 20.01 0.09 0.54 0.47 0.51 0.35
M 49 20.09 0.39 0.24 0.21 0.18 0.18
W 32 0.21 0.07 0.49 0.47 0.48 0.35
C 25 0.57 0.81 0.68 0.60 0.72 0.57
S 136 0.15 20.16 0.50 0.52 0.70 0.48
T 100 0.39 0.20 0.66 0.57 0.71 0.59
N 90 0.25 0.25 0.65 0.60 0.67 0.52
Q 107 20.02 20.09 0.39 0.32 0.14 0.30
H 75 20.11 20.30 0.53 0.47 0.55 0.62
Y 101 0.05 0.16 0.56 0.62 0.50 0.46
D 148 0.27 0.08 0.69 0.59 0.61 0.47
E 392 20.33 20.13 0.40 0.34 0.09 0.37
K 114 20.18 0.02 0.21 0.06 0.23 0.11
R 419 20.30 20.04 0.26 0.15 0.31 0.15

Correlation coefficients for all 19 amino acids
Design 1.00 0.40 0.79 0.83 0.79 0.70
RAN 0.40 1.00 0.29 0.24 0.31 0.19

The helix propensity scales are from the following: Design, structure-based propensity scale based on computer generated sequences (this work); RAN,
propensity scale based on random sequences with native amino acid composition (this work); Pace (28); AGADIR (52); RevoC&F [revised statistical scale based on
Chou and Fasman (4)]; Luque (29). N is the total number of the corresponding amino acid type in a-helices, in the pool of 100 designed sequences.

Table 3. Comparison of b-sheet propensity scales

Amino
acid N Design RAN Minor Minor2 Smith Kim RevoC&F

G 49 0.76 20.11 21.20 1.21 20.85 0.00 0.14
A 139 20.12 20.22 0.00 0.00 0.00 20.35 0.24
V 178 20.70 20.14 0.82 20.94 0.17 20.53 20.49
I 140 20.77 0.20 1.00 21.25 0.02 20.56 20.45
L 85 0.15 0.39 0.51 20.45 20.24 20.48 20.16
F 84 20.67 0.32 0.86 21.08 0.16 20.55 20.21
M 33 20.71 0.39 0.72 20.90 20.02 20.46 20.01
W 17 20.14 20.20 0.54 21.04 20.17 20.48 20.22
C 70 20.63 20.14 0.52 20.78 0.08 20.47 20.07
S 12 1.45 0.29 0.70 20.87 0.63 20.39 0.06
T 107 20.70 20.35 1.10 21.36 0.83 20.48 20.29
N 13 1.05 20.17 20.08 20.52 20.24 20.38 0.42
Q 7 1.67 0.28 0.23 20.38 0.04 20.40 20.00
H 7 1.34 0.29 0.96 21.63 0.11 20.46 0.19
Y 49 20.49 0.04 20.02 20.37 20.01 20.50 20.27
D 20 1.12 20.15 20.94 0.85 20.10 20.41 0.42
E 41 0.91 0.07 0.01 20.23 0.31 20.41 0.67
K 26 0.29 0.11 0.45 20.40 20.43 20.41 0.31
R 81 0.34 0.06 0.27 20.35 20.40 20.44 0.06

Correlation coefficients for all 19 amino acids
Design 1.00 0.18 20.43 0.35 20.12 0.46 0.67
RAN 0.18 1.00 0.33 20.26 20.00 20.23 20.05

Correlation coefficients for 15 amino acids (excluding S, N, Q, and H)
Design 1.00 20.11 20.80 0.82 20.48 0.59 0.82
RAN 20.11 1.00 0.25 20.18 20.22 20.27 20.05

The b-sheet propensity scales are from the following: Design, structure-based propensity scale based on computer generated sequences (this work); RAN, propensity
scale based on random sequences with native amino acid composition (this work); Minor (25); Minor2 (24); Smith (26); Kim (63); and RevoC&F [revised statistical scale
based on Chou and Fasman (4)]. The b-sheet propensity values defined in this work (Design and RAN) are compared to the five other scales, and the correlation
coefficients are shown for the entire set of 19 residues (excluding P) and for a subset of 15 residues (excluding the four amino acids S, N, Q, and H, under-represented).
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composition (see Table 2, column RAN). The correlation between
this baseline scale and experimental scales is poor. This clearly
indicates that the correlation found between calculated and exper-
imental propensities results from our design procedure and not
from the compositional constraint.

An a-helix is stabilized both by enthalpic contributions (forma-
tion of backbone hydrogen bonds, favorable van der Waals inter-
actions compared with a coil configuration, electrostatic interac-
tions such as salt bridges, etc.) as well as entropic contributions (the
difference between the Ala and Gly propensities can be explained
by a large reduction in conformational space available when the
side-chain H of a glycine is replaced by a CH3 in Ala) (54–58).
Many of these effects can be accounted for by a semiempirical free
energy of solvation (59). Based on these results, Luque et al. (29)
have derived a structure-based scale, which correlates well with
experimental scales. Hydrophobic effects alone, however, cannot
explain the behavior of all amino acids: Entropic effects such as
those described for Ala and Gly, and specific interactions within a
protein, have to be taken into account (52, 60, 61). The structure-
based propensity scale described in this study is derived from a
complete physical potential, including van der Waals, electrostatics,
and hydrophobic interactions. It is found to correlate better with
experimental scales than with the structure-based scale of Luque et
al. (29) (see Table 2).

b-Sheet propensity. Experimental studies of b-sheet preferences
have been addressed mainly in two protein model systems, a
zinc-finger peptide (62), and the B1 domain of protein G (24–26).
Other model systems based on homooligopeptide have proven
inappropriate for the study of b-sheet propensities.

We compare our structure-based scale with these four experi-
mental scales, as well as with the revised statistical scale of Chou
and Fasman (4) in Table 3. The correlation of our structure-derived
preferences with the experimental scales is poor if we include all
residues except proline (no experimental data). Note that the
correlation with the revised statistical scale of Chou and Fasman (4)
is good, with a correlation coefficient of 0.74. Four residues have
been observed with very low counts: Ser, Asn, Gln, and His, yielding
very small preferences and consequently unreasonably high values
for the effective energy-like values (Table 3). If these four residues
are not included, the correlation between our scale and the other
scales become more reasonable (correlation coefficients ranging
between 0.48 and 0.82; there is a change of signs for the correlation
because of different definitions of DDG in the experimental stud-
ies). Chou and Fasman (4) originally found that Ala destabilizes
more b-sheet than Gly whereas the revised Chou and Fasman scale
shows an opposite behavior. It should be noted that all other scales
identify Ala to be more stable than Gly in sheets. This was
confirmed experimentally by a systematic mutation study of chymo-
trypsin inhibitor 2 (63). The low counts we observe are understand-
able for Asn, Gln, and His, which have been described as poor
b-sheet stabilizers. It is not clear why Ser has low count because it
is found to favor b-sheet, both experimentally and in known protein
structures. Experimental scales based on the B1 domain of protein
G find Thr to be the greatest stabilizer of b-sheet. In the Zinc-finger
data, however, certain large hydrophobic residues (Val, Ile, Phe)
have more stabilizing propensities, and, in our scale derived from
designed sequences, Val and Ile favor b-sheet more than Thr. The
b-sheet propensities are in fact context-dependent (63). We present
results that have been averaged over several positions whereas all
experimental scales correspond to one given environment. Con-
sidering these limitations, it is encouraging that we observe such
good correlation.

To test the influence of a fixed amino acid composition in our design
procedure, the same statistical analysis of b-sheet preferences was
performed on random sequences with the same amino acid composi-
tion as the designed sequences (see Table 3, column RAN). The
corresponding random scale shows poor correlation with experimental
scales, for both subsets of amino acids (19 or 15). This confirms that our
design procedure leads to statistically significant correlation well with
experimental b-sheet propensity scales.

Hydrophobic interactions are considered to be the primary factor
stabilizing b-sheet (25, 26, 64), explaining why large nonpolar amino
acids have the largest sheet-forming propensities. There have been
attempts to rationalize these propensity values by relating it to changes
in solvent-accessible surface area, packing density, and statistical po-
tentials based on backbone conformations (63); no significant correla-
tion, however, could be detected. This is in contrast with helix propen-
sities, which can be reproduced by changes in solvent accessibility (29,
65). It is therefore encouraging that we could reproduce experimental
scales in a procedure based on a physical semiempirical potential,
including steric and electrostatic effects, as well as environment inter-
actions. Note that the environment free energy included here is based
on solvent accessible surface area as well as interatomic contact areas
within the protein.

Secondary Structures Affect Protein Design. For each protein in our
data set, we computed the average distance between the de-
signed sequences and the native sequence by using sequence
identity as a metric, and we compared that number with the
secondary structure content of the protein, SSC, as measured by
STRIDE (38). Results are shown in Fig. 2. Though the correlation
is weak (0.62), there is a clear trend. Sequences designed on

Fig. 2. (A) The average similarity in sequence between 10 designed sequences
and the native sequence for their target backbone is plotted versus the secondary
structure content of the protein. The straight line represents a least square fit to
the data. The corresponding Pearson correlation coefficient is 0.62. (B) For each
protein, the specificity of the designed sequences was tested by using THREADER,
a fold recognition program. The score of the native fold is computed for each
designed sequence, SD, and for the native sequence, SN. The ratio ZR 5 SDySN
defines a relative Z-score: when ZR is close to 1, the designed sequence is as
specific as the native sequence. The average ZR over all designed sequences for a
givenprotein isplottedversus thesecondarystructurecontentof theprotein.The
straight line represents a least square fit to the data. The corresponding Pearson
correlation coefficient is 0.82.
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protein templates with high levels of secondary structure have
greater similarities to the native sequences. The same trend is
observed when we compare the designed sequences among
themselves, i.e., the average sequence identity over the (10 3
9)y2 5 45 different pairs of sequences designed for a given
protein correlates positively (0.63) with the secondary structure
content (result not shown). Both results indicate that residues
involved in an a-helix or a b-sheet are more constrained than
loop residues and are consequently less prone to mutation. In a
protein, the amino acids most sensitive to substitution are
located in the buried, rigid parts of the structure whereas changes
on the surface generally have little effect (65, 66). For the 10
proteins in our data set, the average solvent accessibility of
residues in helices, strands, and coils are 20, 30, and 43%,
respectively [accessible surface area were computed with the
program ENVIRON (35)]. Residues in proteins with low second-
ary structure contents are therefore more exposed to solvent on
average, which would explain the correlation we observed here.

In Fig. 2B, we report the relative Z-score, ZR, averaged over all
designed sequences versus the secondary structure content, SSC, of
the protein. Interestingly, ^ZR& and SSC are highly correlated
(0.82). There are at least two plausible reasons for this correlation:
(i) the way we include specificity in the design procedure is less
efficient at low secondary structure content, or (ii) THREADER itself
is not as reliable under these conditions. These two reasons are
obviously not exclusive and both are considered to be valid.

Conclusion
Proteins can be very tolerant to amino acid substitution, even within
their core (65). Furthermore, the response to the same type of
mutation can vary significantly, depending on its position in the
structure of the protein. Understanding the factors responsible for
these behaviors is consequently of crucial importance for protein
engineering and design. Mutations in protein have been quantified
in terms of the changes in stability they induce. For example, guest
residues in specific secondary structures have been used as probes
of conformational preferences of amino acids, yielding propensity
scales (67, 68). Predicting amino acid propensities is therefore a
good test of any new potential energy functions designed to mimic
protein stability. Our protein design procedure uses a semiempirical
physical potential, which includes steric interactions, electrostatics,
and an environment free energy. The sequences designed by this
procedure were used to derive conformational preferences for
amino acids. The resulting structure-based propensity scales show
significant agreements with experimental DG values, both for
a-helices and b-sheets. Our results indicate that amino acid con-
formational preferences should be a natural consequence of the
sequence design procedure rather than an input to such a program.
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